Java Program

Arthur Hoskey, Ph.D.
Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

—

Chapter 6 (continued)

Review methods

Review stack and heap memory
Call stack and activation records
Method signatures

Overloading

—~ o~ |

© 2023 Arthur Hoskey. All
rights reserved.

public class Test

{

public static void main(String[] args)

{
ShowData(10, "Arthur", "Farmingdale");

} S~~~

public static void ShowData(int id, String name, String school)
{

System.out.printin(id);

System.out.printin(name);

System.out.println(school);

return;

public class Test

{
public void SomeMethod()

{
int iISquaredNum;
"~ iISquaredNum = SquareANumber(10);

Iy

Returns an int < I

public int SquareANumber(int iINum)
{ R ‘ Takes an int as

IResult = iINum * iNum;

return iResult;

¥
¥

Methods and Assiaganment REVIEW

public class Test

{
public void SomeMethod()

{
int iISquarePlusOneHundred;
ISquarePlusOneHundred =(SquareANumber(10) +@
v =
100 + 100
public int SquareANumber(int iNum)
{
int iResult; = ANumber() .
: _ o) guareANumber() evaluates
Rt [Num = INum; to 100 which is then added to
_ the constant 100 creating the
return iResult; value 200.
b

Methods and Assignment REVIEW

d heap memory

© 2023 Arthur Hoskey. All
rights reserved.

Two types of Memory

Stack Heap

All local Member
variables and variables of
parameters reference

types

© 2023 Arthur Hoskey. All
rights reserved.

Memory layout example...

Both primitive and reference types are
included.

public class Employee { What does
int m_ild; memory look like?
int m_iSalary; -
public Employee(int id, int salary) {
m_ild = id;
m_iSalary = salary;

»

public static void main(String[] args) {
int numl = 15;
String name = new String("Arthur");
Employee emp;

r
- Did not call new on Employee.

Memory [T Memory
Location Location
1000 ERENGUIERLLY name:String 21000
"Arthur" '
(0[0V.8 21000 (hame: String)
1008 BUTUNGlsH=1g]slEE) _ 21128
1016 21136

iMemory

public class Employee {
int m_iId; What does
int m_iSalary; memory look like?

public Employee(int id, int salary) {
m_ild = id;
m_iSalary = salary;

»

public static void main(String[] args) {
int numl = 15;
String name = new String("Arthur");
Employee emp = nhew Employee(10, 2000);

- new is called Employee.

Memory
L ocation
15 (num1l:int)

name:String 21000

"Arthur”
21000 (name: String)

21128(emp:Employee) emp:Employee

10 (int:m_iId) 21128
2000 (int:m_iSalary) 21132

21136

dMlemory y

© 2023 Arthur Hoskey. All
rights reserved.

Show the memory layout of the following:
public class Student { Hints:
private intid = 1;
private int credits = 12;

1. Int variable

public static void main(String args[]) { takes up 4

Student s = new Student(); bytes
int num = 10: 2 Re_ference
Student s2 = new Student(); pointer takes

b up 4 bytes
Stack Heap

100 value (name, type) 2000 value (name, type)

104 2004

108 2008

112 2012

- SOLUTION

2000 (s:Student)

10 (num:int)

2008 (s2:Student)

dMlemory

s:Student

1 (int:id)
12 (int:credits)

s2:Student
1 (int:id)
12 (int:credits)

X

Memory
L ocation

2000
2004

2008
2012

© 2023 Arthur Hoskey. All

rights reserved.

ck and activation records

© 2023 Arthur Hoskey. All
rights reserved.

A stack is a data structure (a collection of
related items).

Similar to a "stack of dishes".

|

If you add a dish to the pile it will always
be placed on top.

Assume the following:
1. Only add to the top of the stack.
2. Only remove from the top of the stack.

So, if you add a dish on top of a stack then that
dish will be the first one removed (because it is
on top).

Last In First Out (LIFO). The last one in is the
first one out.

Terminology:
Push: Put something on the stack.
Pop: Take something off the stack.

You push items on to a stack.
You pop items off of a stack.

Pushing and popping only occur from the top of the
stack.

For example...

'Add items - "Push" on to top of stack ‘

Before Push

Top
Of === {1
Stack

‘ack = Push

New Item

Vo

Item

Item

Item

After Push
Stack
Top
New Item € Of
Stack

Item

Item

Item |

© 2023 Arthur Hoskey. All
rights reserved.

'Remove items - "Pop" from top of stack‘

Before Pop After Pop

Top
ol 4 Item
Stack
Top
<€ Of
Stack

ck - Pop ‘

© 2023 Arthur Hoskey. All
rights reserved.

More details about the JVM stack.

Proper name: Method call stack or
program execution stack.

Variables are not just stored anywhere on
the stack.

Variables from the same method are
grouped together on the stack.

~
— S N DS —

All variables declared in a method are stored in
an activation record (or stack frame).

The activation record for a method call stores all
the variables declared in that method.

Call Stack Actions
Call Method: Push activation record on stack.
End Method: Pop activation record off stack.

For example...

— e ey e = —

tem.out.printin("In B");

id AQ) {
System.out.printin("In A");

B();
B(O);

id main(...) {
stem.out.printin("In main");

as not started yet. No activation records on stack.

d Calls and Call Sta

Call Stack

© 2023 Arthur Hoskey. All
rights reserved.

BO {

ystem.ou

void A() {

B();
B(O);
}

void main(...
System.ou

Ok

started. In main and about to execute the "next" line (in bold).

System.out.printin("In A");

At "next"

Call Stack

t.printin("In B");

)

t.printin("In main"); // next

od Calls and Call Stac

© 2023 Arthur Hoskey. All
rights reserved.

called A. This causes an activation record for A to be pushed on s

oid B() { At "next"
System.out.printin("In B");

: Call Stack

void A() {
System.out.printin("In A");
B(); // next
B();

s

void main(...) {
System.out.printin("In main");
A(); // called from here...

b

hod Calls and Call Stack

© 2023 Arthur Hoskey. All
rights reserved.

alled B. This causes an activation record for B to be pushed on stack.

void B() { At " nextu
System.out.printin("In B"); // next

; Call Stack

void A() {
System.out.printin("In A");
B(); // called from here...
B(O);

¥

Top

<€— Of
Stack

void main(...) {
System.out.printin("In main");
AQ);

¥

thod Calls and Call Stack

© 2023 Arthur Hoskey. All
rights reserved.

ed. This causes B activation record to be popped. A will call B a

d B() { At "next"

System.out.printin("In B");
Call Stack

void A() {
System.out.printin("In A");
B(O);
B(); // next

b

void main(...) {
System.out.printin("In main");

AQ);

od Calls and Call Stack

© 2023 Arthur Hoskey. All
rights reserved.

alled B again. An activation record for B is pushed on the stack again.

void B() { At " nextu

System.out.printin("In B"); // next
y Call Stack
void A() {
System.out.printin("In A");
B();
B(); // called from here...
Top
1 <€ Of
Stack

void main(...) {
System.out.printin("In main");
AQ);

¥

thod Calls and Call Stack

© 2023 Arthur Hoskey. All
rights reserved.

ed. This causes B activation record to be popped. A about to en

d B() { At "next"

System.out.printin("In B");
Call Stack

void A() {
System.out.printin("In A");
B();
B(O);

¥} // next

void main(...) {
System.out.printin("In main");

AQ);

od Calls and Call Stack

© 2023 Arthur Hoskey. All
rights reserved.

. This causes A activation record to be popped. main about

At "next"

Call Stack

ystem.out.printin("In B");

oid A() {
System.out.printin("In A");

B();
¥

void main(...) {
System.out.println("In main");

od Calls and Call Stac

© 2023 Arthur Hoskey. All
rights reserved.

id A() {
B();

oid main(...) {

);

d. Program Done. No more activation records on stack.

tem.out.printin("In B");

System.out.printin("In A");

ystem.out.printin("In main");

At "next"

Call Stack

d Calls and Call Sta

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

+

int m_Id;
int m_Salary;

public Employee(int id, int salary) {
m_Id = id;
m_Salary = salary;

¥

public void Raise(int amount) {
m_Salary = m_Salary + amount;

¥

public static void main(...) {

Assume the
program has
executed to the
"next" line.

What does memory
look like in more
detail using
activation records?

Employee empl = new Employee(111, 20),
Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;
empl.Raise(raiseAmt); // next
emp2.Raise(raiseAmt);

4 X

- main local variables grouped together

Memory
Location Stack main() method’s

992 e O activation

Activation records record
996 will be added here
main() The activation
L / record IS
1004 10 (raiseAmt:int) Colored black
N0lalel 21000 (empl:Employee) Important
Activation record holds
1012 21008 (emp2:Employee) all local variables and
parameters

dMlemory 4

© 2023 Arthur Hoskey. All
rights reserved.

4 X

- empl and emp2 refer to heap locations

Memory Memory
Location Stack Location

992 [O S O

Activation records Employee
996 will be added here 111:m_Id 21000
20 :m_Salary
1000
: > Employ

1004 10 (raiseAmt:int) 2212:%_?3 21008

50 :m_Salary

1008 21000 (empl:Employee)

1012 BGEAACU LS NED

dMlemory 4

© 2023 Arthur Hoskey. All
rights reserved.

pu?r:'tcn:'aijmployee { When inside the Raise

int m_Salary; method how does it know

which m_Salary to use?
public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary; Is the value 20 or 50?

¥

public void Raise(int amount) {
m_Salary = m_Salary + amount;

¥

public static void main(...) {
Employee empl = new Employee(111, 20);
Employee emp2 = new Employee(222, 50);
int raiseAmt = 10;
emp1l.Raise(raiseAmt);
emp2.Raise(raiseAmt);

+

How does it know which m_Salary to use?

Answer: It passes in the base address of the
instance to work with when Raise is called.

In general, when an instance method is called
the instances reference is passed inside the this
reference.

It is a hidden parameter that gets passed into
the method.

The this reference is used to get access to the
current instances member variables.

this is automatically populated with the address
of the current instance when an instance method
IS called.

The value of this will change depending on which
Instance it was called from.

pu?r:'tcn:'afj,Employee { When inside the Raise

int m_Salary; method how does it know

which m_Salary to use?
public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary; Is the value 20 or 507

¥

public void Raise(int amount) {
m_Salary = m_Salary + amount;

¥

public static void main(...) {
Employee empl = new Employee(111, 20);
Employee emp2 = new Employee(222, 50);
int raiseAmt = 10;
empl.Raise(raiseAmt); // called from here
emp2.Raise(raiseAmt);

+

- this reference has 21000 (m_Salary is 20)

Memory Raise() Memory
Location Stack Stack Location

992 rA A4 }ame

oleTo | 21000 this Employee

d 111:m_Id 21000

1000 10 (amount:int) 20 :m_Salary

Employee
222:m_Id 21008

1008 21000 (empl:Employee) / 50 :m_Salary
21008 (emp2:Employee)

1012 =
M C‘j UUU @/ L’-\ ’// main O

: Stack frame

1004 10 (raiseAmt:int)

pu?r:'tcn:'afj,Employee { When inside the Raise

int m_Salary; method how does it know

which m_Salary to use?
public Employee(int id, int salary) {
m_Id = id;

m_Salary = salary; Is the value 20 or 507

¥

public void Raise(int amount) {
m_Salary = m_Salary + amount;

¥

public static void main(...) {
Employee empl = new Employee(111, 20);
Employee emp2 = new Employee(222, 50);
int raiseAmt = 10;
emp1l.Raise(raiseAmt);
emp2.Raise(raiseAmt); // called from here

+

- this reference has 21008 (m_Salary is 50)

Memory Memory
Location Stack Memod
992 rAAAAA
. .
996 21008 this TT]_% »
1000 10 (amount:int) 20 :m_Salary
| { Empl
1004 10 (raiseAmt:int) 24212% 100

50 :m_Salary

1008

1012

public class Employee { Which m Sa|ary gets

¥

int m_Id;
int m_Salary; used?
public Eﬁmﬁjoz'ekej(_int 9 Wt SRR A What is the value of
P lary = salary: m_Salary before running

) "next" line?

public void Raise(int amount) {
int m_Salary;
m_Salary = m_Salary + amount; // next

¥

public static void main(...) {
Employee empl = new Employee(111, 20);
Employee emp2 = new Employee(222, 50);
int raiseAmt = 10;
empl.Raise(raiseAmt);
emp2.Raise(raiseAmt); // called from here

- Two m_Salary (local and member)

Memory
Location

Memory
Location

epl| 21008 this

Employee
111:m_Id 21000

20 :m_Salary

996 10 (m_Salary:int)

Nolslo] 10 (amount:int)

Employee
222:m_Id 21008

50 :m_Salary

Nololl 10 (raiseAmt:int)
1008 21000 (empl:Employee)

(ojilzl 21008 (emp2:Employee)

Memory

Find the Correct Variable Inside a Method
1. Look for it as a local variable first (stored in

activation record).
2. If not found then use this reference to find it as

a member variable.

If a variable is being used that is not declared in
the current activation record it will follow the
this reference and look for it as a member of the

class.

BE CAREFUL !!!
The local variable m_Salary hides or "shadows" the
member variable m_Salary.

public class Employee {
int m_Id;
int m_Salary;

// other code here...
public void Raise(int amount) {

int m_Salary; // Shadows member variable
m_Salary = m_Salary + amount;

b S~—__This will change the local
m_Salary. The member
= code here... variable m_Salary will
é = ol o - remain unchanged.

You are allowed to explicitly use "this" in your code.
Allows you to get around shadowing.

public class Employee {
int m_Id;
int m_Salary;

// other code here...
public void Raise(int amount) {

int m_Salary; // Shadows member variable
this.m_Salary = this.m_Salary + amount;

} w You can explicitly use
// other code here the "this" reference to
3 avoid the shadowing

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Next Section
	Slide 4: Method With Multiple Parameters
	Slide 5: Methods and Assignment REVIEW
	Slide 6: Methods and Assignment REVIEW
	Slide 7: Next Section
	Slide 8: Memory
	Slide 9: Memory
	Slide 10: Memory
	Slide 11: Memory
	Slide 12: Memory
	Slide 13: Memory
	Slide 14: Problem #1
	Slide 15: Memory
	Slide 16: Next Section
	Slide 17: Stacks
	Slide 18: Stacks
	Slide 19: Stacks
	Slide 20: Stack - Push
	Slide 21: Stack - Pop
	Slide 22: Method Call Stack
	Slide 23: Method Call Stack
	Slide 24: Method Calls and Call Stack
	Slide 25: Method Calls and Call Stack
	Slide 26: Method Calls and Call Stack
	Slide 27: Method Calls and Call Stack
	Slide 28: Method Calls and Call Stack
	Slide 29: Method Calls and Call Stack
	Slide 30: Method Calls and Call Stack
	Slide 31: Method Calls and Call Stack
	Slide 32: Method Calls and Call Stack
	Slide 33
	Slide 34: Memory
	Slide 35: Memory
	Slide 36
	Slide 37: this Reference
	Slide 38: this Reference
	Slide 39
	Slide 40: Memory
	Slide 41
	Slide 42: Memory
	Slide 43
	Slide 44: Memory
	Slide 45: Finding Correct Variable
	Slide 46: Shadowing
	Slide 47: Shadowing
	Slide 48: End of Slides

