
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Chapter 6 (continued)

 Review methods

 Review stack and heap memory

 Call stack and activation records

 Method signatures

 Overloading

© 2023 Arthur Hoskey. All
rights reserved.

Next Section

 Method Review

© 2023 Arthur Hoskey. All
rights reserved.

Method With Multiple Parameters

public class Test

{

public static void main(String[] args)

{

ShowData(10, "Arthur", "Farmingdale");

}

public static void ShowData(int id, String name, String school)

{

System.out.println(id);

System.out.println(name);

System.out.println(school);

return;

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Methods and Assignment REVIEW

public class Test

{

public void SomeMethod()

{

int iSquaredNum;

iSquaredNum = SquareANumber(10);

}

public int SquareANumber(int iNum)

{

int iResult;

iResult = iNum * iNum;

return iResult;

}

}

Returns an int

Takes an int as

a parameter

© 2023 Arthur Hoskey. All
rights reserved.

Methods and Assignment REVIEW

public class Test

{

public void SomeMethod()

{

int iSquarePlusOneHundred;

iSquarePlusOneHundred = SquareANumber(10) + 100;

}

100 + 100
public int SquareANumber(int iNum)

{ 200

int iResult;

iResult = iNum * iNum;

return iResult;

}

}

SquareANumber() evaluates

to 100 which is then added to

the constant 100 creating the

value 200.

© 2023 Arthur Hoskey. All
rights reserved.

Next Section

 Stack and heap memory

© 2023 Arthur Hoskey. All
rights reserved.

Memory

Stack

All local
variables and
parameters

Heap

Member
variables of
reference

types

Two types of Memory

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 Memory layout example…

 Both primitive and reference types are
included.

© 2023 Arthur Hoskey. All
rights reserved.

Memory

public class Employee {

int m_iId;

int m_iSalary;

public Employee(int id, int salary) {

m_iId = id;

m_iSalary = salary;

}

public static void main(String[] args) {

int num1 = 15;

String name = new String("Arthur");

Employee emp;

}

};

What does

memory look like?

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 Did not call new on Employee.

Stack

15 (num1:int)

Heap

1000

1004

Memory

Location

21000

21128

Memory

Location

1008

name:String
"Arthur"

21000 (name: String)

21132

21136

1012

1016

null (emp:Employee)

.

.

.

© 2023 Arthur Hoskey. All
rights reserved.

Memory

public class Employee {

int m_iId;

int m_iSalary;

public Employee(int id, int salary) {

m_iId = id;

m_iSalary = salary;

}

public static void main(String[] args) {

int num1 = 15;

String name = new String("Arthur");

Employee emp = new Employee(10, 2000);

}

};

What does

memory look like?

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 new is called Employee.

Stack

15 (num1:int)

Heap

1000

1004

Memory

Location

21000

21128

Memory

Location

1008

name:String
"Arthur"

21000 (name: String)

21132

21136

1012

1016

21128(emp:Employee) emp:Employee
10 (int:m_iId)

2000 (int:m_iSalary)

.

.

.

© 2023 Arthur Hoskey. All
rights reserved.

Problem #1

Show the memory layout of the following:
public class Student {

private int id = 1;

private int credits = 12;

public static void main(String args[]) {

Student s = new Student();

int num = 10;

Student s2 = new Student();

}

Stack Heap

100 value (name, type) 2000 value (name, type)

104 2004

108 2008

112 2012

Hints:

1. int variable

takes up 4

bytes

2. Reference

pointer takes

up 4 bytes

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 SOLUTION

Stack

10 (num:int)

Heap

100

104

Memory

Location

2000

2004

Memory

Location

108

112

116

2000 (s:Student) s:Student
1 (int:id)

12 (int:credits)

.

.

.

s2:Student
1 (int:id)

12 (int:credits)

2008

2012

2008 (s2:Student)

© 2023 Arthur Hoskey. All
rights reserved.

Next Section

 Call stack and activation records

© 2023 Arthur Hoskey. All
rights reserved.

Stacks

 A stack is a data structure (a collection of
related items).

 Similar to a "stack of dishes".

 If you add a dish to the pile it will always
be placed on top.

© 2023 Arthur Hoskey. All
rights reserved.

Stacks

Assume the following:

1. Only add to the top of the stack.

2. Only remove from the top of the stack.

 So, if you add a dish on top of a stack then that
dish will be the first one removed (because it is
on top).

 Last In First Out (LIFO). The last one in is the
first one out.

© 2023 Arthur Hoskey. All
rights reserved.

Stacks

 Terminology:

◦ Push: Put something on the stack.

◦ Pop: Take something off the stack.

 You push items on to a stack.

 You pop items off of a stack.

 Pushing and popping only occur from the top of the
stack.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Stack - Push

 Add items – "Push" on to top of stack

Stack

Item

Item

Before Push

Item

Stack

Item

Item

Item

New Item

Stack

Item

Item

Item

After Push

New Item

Top

Of

Stack

Top

Of

Stack

© 2023 Arthur Hoskey. All
rights reserved.

Stack - Pop

 Remove items – "Pop" from top of stack

Stack

Item

Item

Before Pop

Item

Stack

Item

Item

Item

Item

Stack

Item

Item

Item

After Pop

Top

Of

Stack
Top

Of

Stack

Item

© 2023 Arthur Hoskey. All
rights reserved.

Method Call Stack

More details about the JVM stack.

 Proper name: Method call stack or
program execution stack.

 Variables are not just stored anywhere on
the stack.

 Variables from the same method are
grouped together on the stack.

© 2023 Arthur Hoskey. All
rights reserved.

Method Call Stack

 All variables declared in a method are stored in
an activation record (or stack frame).

 The activation record for a method call stores all
the variables declared in that method.

 Call Stack Actions
◦ Call Method: Push activation record on stack.

◦ End Method: Pop activation record off stack.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Method Calls and Call Stack

Program has not started yet. No activation records on stack.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B();

}

void main(…) {

System.out.println("In main");

A();

}

Call Stack

empty

© 2023 Arthur Hoskey. All
rights reserved.

Program started. In main and about to execute the "next" line (in bold).

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B();

}

void main(…) {

System.out.println("In main"); // next

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

© 2023 Arthur Hoskey. All
rights reserved.

Main called A. This causes an activation record for A to be pushed on stack.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B(); // next

B();

}

void main(…) {

System.out.println("In main");

A(); // called from here…

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

© 2023 Arthur Hoskey. All
rights reserved.

A called B. This causes an activation record for B to be pushed on stack.

void B() {

System.out.println("In B"); // next

}

void A() {

System.out.println("In A");

B(); // called from here…

B();

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

B()

© 2023 Arthur Hoskey. All
rights reserved.

B ended. This causes B activation record to be popped. A will call B again.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B(); // next

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

© 2023 Arthur Hoskey. All
rights reserved.

A called B again. An activation record for B is pushed on the stack again.

void B() {

System.out.println("In B"); // next

}

void A() {

System.out.println("In A");

B();

B(); // called from here…

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

B()

© 2023 Arthur Hoskey. All
rights reserved.

B ended. This causes B activation record to be popped. A about to end.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B();

} // next

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

© 2023 Arthur Hoskey. All
rights reserved.

A ended. This causes A activation record to be popped. main about to end.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

}

void main(…) {

System.out.println("In main");

A();

} // next

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

© 2023 Arthur Hoskey. All
rights reserved.

main ended. Program Done. No more activation records on stack.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

empty

At "next"

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt); // next

emp2.Raise(raiseAmt);

}

};

Assume the

program has

executed to the

"next" line.

What does memory

look like in more

detail using

activation records?

© 2023 Arthur Hoskey. All
rights reserved.

 main local variables grouped together

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

main() method’s

activation

record

The activation

record is

colored black

996

992

main()

Important

Activation record holds

all local variables and

parameters

Activation records

will be added here

© 2023 Arthur Hoskey. All
rights reserved.

 emp1 and emp2 refer to heap locations

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Activation records

will be added here

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt);

emp2.Raise(raiseAmt);

}

};

When inside the Raise

method how does it know

which m_Salary to use?

Is the value 20 or 50?

© 2023 Arthur Hoskey. All
rights reserved.

 How does it know which m_Salary to use?

Answer: It passes in the base address of the
instance to work with when Raise is called.

 In general, when an instance method is called
the instances reference is passed inside the this
reference.

 It is a hidden parameter that gets passed into
the method.

this Reference
© 2023 Arthur Hoskey. All
rights reserved.

this Reference

 The this reference is used to get access to the
current instances member variables.

 this is automatically populated with the address
of the current instance when an instance method
is called.

 The value of this will change depending on which
instance it was called from.

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt); // called from here

emp2.Raise(raiseAmt);

}

};

When inside the Raise

method how does it know

which m_Salary to use?

Is the value 20 or 50?

© 2023 Arthur Hoskey. All
rights reserved.

 this reference has 21000 (m_Salary is 20)

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

21000 this

10 (amount:int)

main()

Stack frame

Raise()

Stack

frame

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt);

emp2.Raise(raiseAmt); // called from here

}

};

When inside the Raise

method how does it know

which m_Salary to use?

Is the value 20 or 50?

© 2023 Arthur Hoskey. All
rights reserved.

 this reference has 21008 (m_Salary is 50)

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

21008 this

10 (amount:int)

main()

Raise()

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

int m_Salary;

m_Salary = m_Salary + amount; // next

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt);

emp2.Raise(raiseAmt); // called from here

}

};

Which m_Salary gets

used?

What is the value of

m_Salary before running

"next" line?

© 2023 Arthur Hoskey. All
rights reserved.

 Two m_Salary (local and member)

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

21008 this

10 (amount:int)

main()

Raise()

10 (m_Salary:int)

© 2023 Arthur Hoskey. All
rights reserved.

Finding Correct Variable

Find the Correct Variable Inside a Method

1. Look for it as a local variable first (stored in
activation record).

2. If not found then use this reference to find it as
a member variable.

 If a variable is being used that is not declared in
the current activation record it will follow the
this reference and look for it as a member of the
class.

© 2023 Arthur Hoskey. All
rights reserved.

Shadowing

 BE CAREFUL !!!

 The local variable m_Salary hides or "shadows" the
member variable m_Salary.

public class Employee {

int m_Id;

int m_Salary;

// other code here…

public void Raise(int amount) {

int m_Salary; // Shadows member variable

m_Salary = m_Salary + amount;

}

// other code here…

}

This will change the local

m_Salary. The member

variable m_Salary will

remain unchanged.

© 2023 Arthur Hoskey. All
rights reserved.

Shadowing

 You are allowed to explicitly use "this" in your code.

 Allows you to get around shadowing.

public class Employee {

int m_Id;

int m_Salary;

// other code here…

public void Raise(int amount) {

int m_Salary; // Shadows member variable

this.m_Salary = this.m_Salary + amount;

}

// other code here…

}

You can explicitly use

the "this" reference to

avoid the shadowing

© 2023 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Next Section
	Slide 4: Method With Multiple Parameters
	Slide 5: Methods and Assignment REVIEW
	Slide 6: Methods and Assignment REVIEW
	Slide 7: Next Section
	Slide 8: Memory
	Slide 9: Memory
	Slide 10: Memory
	Slide 11: Memory
	Slide 12: Memory
	Slide 13: Memory
	Slide 14: Problem #1
	Slide 15: Memory
	Slide 16: Next Section
	Slide 17: Stacks
	Slide 18: Stacks
	Slide 19: Stacks
	Slide 20: Stack - Push
	Slide 21: Stack - Pop
	Slide 22: Method Call Stack
	Slide 23: Method Call Stack
	Slide 24: Method Calls and Call Stack
	Slide 25: Method Calls and Call Stack
	Slide 26: Method Calls and Call Stack
	Slide 27: Method Calls and Call Stack
	Slide 28: Method Calls and Call Stack
	Slide 29: Method Calls and Call Stack
	Slide 30: Method Calls and Call Stack
	Slide 31: Method Calls and Call Stack
	Slide 32: Method Calls and Call Stack
	Slide 33
	Slide 34: Memory
	Slide 35: Memory
	Slide 36
	Slide 37: this Reference
	Slide 38: this Reference
	Slide 39
	Slide 40: Memory
	Slide 41
	Slide 42: Memory
	Slide 43
	Slide 44: Memory
	Slide 45: Finding Correct Variable
	Slide 46: Shadowing
	Slide 47: Shadowing
	Slide 48: End of Slides

