
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Chapter 6 (continued)

 Review methods

 Review stack and heap memory

 Call stack and activation records

 Method signatures

 Overloading

© 2023 Arthur Hoskey. All
rights reserved.

Next Section

 Method Review

© 2023 Arthur Hoskey. All
rights reserved.

Method With Multiple Parameters

public class Test

{

public static void main(String[] args)

{

ShowData(10, "Arthur", "Farmingdale");

}

public static void ShowData(int id, String name, String school)

{

System.out.println(id);

System.out.println(name);

System.out.println(school);

return;

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Methods and Assignment REVIEW

public class Test

{

public void SomeMethod()

{

int iSquaredNum;

iSquaredNum = SquareANumber(10);

}

public int SquareANumber(int iNum)

{

int iResult;

iResult = iNum * iNum;

return iResult;

}

}

Returns an int

Takes an int as

a parameter

© 2023 Arthur Hoskey. All
rights reserved.

Methods and Assignment REVIEW

public class Test

{

public void SomeMethod()

{

int iSquarePlusOneHundred;

iSquarePlusOneHundred = SquareANumber(10) + 100;

}

100 + 100
public int SquareANumber(int iNum)

{ 200

int iResult;

iResult = iNum * iNum;

return iResult;

}

}

SquareANumber() evaluates

to 100 which is then added to

the constant 100 creating the

value 200.

© 2023 Arthur Hoskey. All
rights reserved.

Next Section

 Stack and heap memory

© 2023 Arthur Hoskey. All
rights reserved.

Memory

Stack

All local
variables and
parameters

Heap

Member
variables of
reference

types

Two types of Memory

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 Memory layout example…

 Both primitive and reference types are
included.

© 2023 Arthur Hoskey. All
rights reserved.

Memory

public class Employee {

int m_iId;

int m_iSalary;

public Employee(int id, int salary) {

m_iId = id;

m_iSalary = salary;

}

public static void main(String[] args) {

int num1 = 15;

String name = new String("Arthur");

Employee emp;

}

};

What does

memory look like?

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 Did not call new on Employee.

Stack

15 (num1:int)

Heap

1000

1004

Memory

Location

21000

21128

Memory

Location

1008

name:String
"Arthur"

21000 (name: String)

21132

21136

1012

1016

null (emp:Employee)

.

.

.

© 2023 Arthur Hoskey. All
rights reserved.

Memory

public class Employee {

int m_iId;

int m_iSalary;

public Employee(int id, int salary) {

m_iId = id;

m_iSalary = salary;

}

public static void main(String[] args) {

int num1 = 15;

String name = new String("Arthur");

Employee emp = new Employee(10, 2000);

}

};

What does

memory look like?

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 new is called Employee.

Stack

15 (num1:int)

Heap

1000

1004

Memory

Location

21000

21128

Memory

Location

1008

name:String
"Arthur"

21000 (name: String)

21132

21136

1012

1016

21128(emp:Employee) emp:Employee
10 (int:m_iId)

2000 (int:m_iSalary)

.

.

.

© 2023 Arthur Hoskey. All
rights reserved.

Problem #1

Show the memory layout of the following:
public class Student {

private int id = 1;

private int credits = 12;

public static void main(String args[]) {

Student s = new Student();

int num = 10;

Student s2 = new Student();

}

Stack Heap

100 value (name, type) 2000 value (name, type)

104 2004

108 2008

112 2012

Hints:

1. int variable

takes up 4

bytes

2. Reference

pointer takes

up 4 bytes

© 2023 Arthur Hoskey. All
rights reserved.

Memory

 SOLUTION

Stack

10 (num:int)

Heap

100

104

Memory

Location

2000

2004

Memory

Location

108

112

116

2000 (s:Student) s:Student
1 (int:id)

12 (int:credits)

.

.

.

s2:Student
1 (int:id)

12 (int:credits)

2008

2012

2008 (s2:Student)

© 2023 Arthur Hoskey. All
rights reserved.

Next Section

 Call stack and activation records

© 2023 Arthur Hoskey. All
rights reserved.

Stacks

 A stack is a data structure (a collection of
related items).

 Similar to a "stack of dishes".

 If you add a dish to the pile it will always
be placed on top.

© 2023 Arthur Hoskey. All
rights reserved.

Stacks

Assume the following:

1. Only add to the top of the stack.

2. Only remove from the top of the stack.

 So, if you add a dish on top of a stack then that
dish will be the first one removed (because it is
on top).

 Last In First Out (LIFO). The last one in is the
first one out.

© 2023 Arthur Hoskey. All
rights reserved.

Stacks

 Terminology:

◦ Push: Put something on the stack.

◦ Pop: Take something off the stack.

 You push items on to a stack.

 You pop items off of a stack.

 Pushing and popping only occur from the top of the
stack.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Stack - Push

 Add items – "Push" on to top of stack

Stack

Item

Item

Before Push

Item

Stack

Item

Item

Item

New Item

Stack

Item

Item

Item

After Push

New Item

Top

Of

Stack

Top

Of

Stack

© 2023 Arthur Hoskey. All
rights reserved.

Stack - Pop

 Remove items – "Pop" from top of stack

Stack

Item

Item

Before Pop

Item

Stack

Item

Item

Item

Item

Stack

Item

Item

Item

After Pop

Top

Of

Stack
Top

Of

Stack

Item

© 2023 Arthur Hoskey. All
rights reserved.

Method Call Stack

More details about the JVM stack.

 Proper name: Method call stack or
program execution stack.

 Variables are not just stored anywhere on
the stack.

 Variables from the same method are
grouped together on the stack.

© 2023 Arthur Hoskey. All
rights reserved.

Method Call Stack

 All variables declared in a method are stored in
an activation record (or stack frame).

 The activation record for a method call stores all
the variables declared in that method.

 Call Stack Actions
◦ Call Method: Push activation record on stack.

◦ End Method: Pop activation record off stack.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Method Calls and Call Stack

Program has not started yet. No activation records on stack.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B();

}

void main(…) {

System.out.println("In main");

A();

}

Call Stack

empty

© 2023 Arthur Hoskey. All
rights reserved.

Program started. In main and about to execute the "next" line (in bold).

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B();

}

void main(…) {

System.out.println("In main"); // next

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

© 2023 Arthur Hoskey. All
rights reserved.

Main called A. This causes an activation record for A to be pushed on stack.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B(); // next

B();

}

void main(…) {

System.out.println("In main");

A(); // called from here…

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

© 2023 Arthur Hoskey. All
rights reserved.

A called B. This causes an activation record for B to be pushed on stack.

void B() {

System.out.println("In B"); // next

}

void A() {

System.out.println("In A");

B(); // called from here…

B();

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

B()

© 2023 Arthur Hoskey. All
rights reserved.

B ended. This causes B activation record to be popped. A will call B again.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B(); // next

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

© 2023 Arthur Hoskey. All
rights reserved.

A called B again. An activation record for B is pushed on the stack again.

void B() {

System.out.println("In B"); // next

}

void A() {

System.out.println("In A");

B();

B(); // called from here…

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

B()

© 2023 Arthur Hoskey. All
rights reserved.

B ended. This causes B activation record to be popped. A about to end.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

B();

} // next

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

A()

© 2023 Arthur Hoskey. All
rights reserved.

A ended. This causes A activation record to be popped. main about to end.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

}

void main(…) {

System.out.println("In main");

A();

} // next

Method Calls and Call Stack

Call Stack

main()

At "next"

Top

Of

Stack

© 2023 Arthur Hoskey. All
rights reserved.

main ended. Program Done. No more activation records on stack.

void B() {

System.out.println("In B");

}

void A() {

System.out.println("In A");

B();

}

void main(…) {

System.out.println("In main");

A();

}

Method Calls and Call Stack

Call Stack

empty

At "next"

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt); // next

emp2.Raise(raiseAmt);

}

};

Assume the

program has

executed to the

"next" line.

What does memory

look like in more

detail using

activation records?

© 2023 Arthur Hoskey. All
rights reserved.

 main local variables grouped together

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

main() method’s

activation

record

The activation

record is

colored black

996

992

main()

Important

Activation record holds

all local variables and

parameters

Activation records

will be added here

© 2023 Arthur Hoskey. All
rights reserved.

 emp1 and emp2 refer to heap locations

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Activation records

will be added here

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt);

emp2.Raise(raiseAmt);

}

};

When inside the Raise

method how does it know

which m_Salary to use?

Is the value 20 or 50?

© 2023 Arthur Hoskey. All
rights reserved.

 How does it know which m_Salary to use?

Answer: It passes in the base address of the
instance to work with when Raise is called.

 In general, when an instance method is called
the instances reference is passed inside the this
reference.

 It is a hidden parameter that gets passed into
the method.

this Reference
© 2023 Arthur Hoskey. All
rights reserved.

this Reference

 The this reference is used to get access to the
current instances member variables.

 this is automatically populated with the address
of the current instance when an instance method
is called.

 The value of this will change depending on which
instance it was called from.

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt); // called from here

emp2.Raise(raiseAmt);

}

};

When inside the Raise

method how does it know

which m_Salary to use?

Is the value 20 or 50?

© 2023 Arthur Hoskey. All
rights reserved.

 this reference has 21000 (m_Salary is 20)

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

21000 this

10 (amount:int)

main()

Stack frame

Raise()

Stack

frame

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

m_Salary = m_Salary + amount;

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt);

emp2.Raise(raiseAmt); // called from here

}

};

When inside the Raise

method how does it know

which m_Salary to use?

Is the value 20 or 50?

© 2023 Arthur Hoskey. All
rights reserved.

 this reference has 21008 (m_Salary is 50)

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

21008 this

10 (amount:int)

main()

Raise()

© 2023 Arthur Hoskey. All
rights reserved.

public class Employee {

int m_Id;

int m_Salary;

public Employee(int id, int salary) {

m_Id = id;

m_Salary = salary;

}

public void Raise(int amount) {

int m_Salary;

m_Salary = m_Salary + amount; // next

}

public static void main(…) {

Employee emp1 = new Employee(111, 20);

Employee emp2 = new Employee(222, 50);

int raiseAmt = 10;

emp1.Raise(raiseAmt);

emp2.Raise(raiseAmt); // called from here

}

};

Which m_Salary gets

used?

What is the value of

m_Salary before running

"next" line?

© 2023 Arthur Hoskey. All
rights reserved.

 Two m_Salary (local and member)

Stack

Memory

10 (raiseAmt:int)

1000

1004

Memory

Location

1008 21000 (emp1:Employee)

1012 21008 (emp2:Employee)

996

992

Heap

21000

21008

Employee
111:m_Id
20 :m_Salary

Employee
222:m_Id
50 :m_Salary

Memory

Location

21008 this

10 (amount:int)

main()

Raise()

10 (m_Salary:int)

© 2023 Arthur Hoskey. All
rights reserved.

Finding Correct Variable

Find the Correct Variable Inside a Method

1. Look for it as a local variable first (stored in
activation record).

2. If not found then use this reference to find it as
a member variable.

 If a variable is being used that is not declared in
the current activation record it will follow the
this reference and look for it as a member of the
class.

© 2023 Arthur Hoskey. All
rights reserved.

Shadowing

 BE CAREFUL !!!

 The local variable m_Salary hides or "shadows" the
member variable m_Salary.

public class Employee {

int m_Id;

int m_Salary;

// other code here…

public void Raise(int amount) {

int m_Salary; // Shadows member variable

m_Salary = m_Salary + amount;

}

// other code here…

}

This will change the local

m_Salary. The member

variable m_Salary will

remain unchanged.

© 2023 Arthur Hoskey. All
rights reserved.

Shadowing

 You are allowed to explicitly use "this" in your code.

 Allows you to get around shadowing.

public class Employee {

int m_Id;

int m_Salary;

// other code here…

public void Raise(int amount) {

int m_Salary; // Shadows member variable

this.m_Salary = this.m_Salary + amount;

}

// other code here…

}

You can explicitly use

the "this" reference to

avoid the shadowing

© 2023 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Next Section
	Slide 4: Method With Multiple Parameters
	Slide 5: Methods and Assignment REVIEW
	Slide 6: Methods and Assignment REVIEW
	Slide 7: Next Section
	Slide 8: Memory
	Slide 9: Memory
	Slide 10: Memory
	Slide 11: Memory
	Slide 12: Memory
	Slide 13: Memory
	Slide 14: Problem #1
	Slide 15: Memory
	Slide 16: Next Section
	Slide 17: Stacks
	Slide 18: Stacks
	Slide 19: Stacks
	Slide 20: Stack - Push
	Slide 21: Stack - Pop
	Slide 22: Method Call Stack
	Slide 23: Method Call Stack
	Slide 24: Method Calls and Call Stack
	Slide 25: Method Calls and Call Stack
	Slide 26: Method Calls and Call Stack
	Slide 27: Method Calls and Call Stack
	Slide 28: Method Calls and Call Stack
	Slide 29: Method Calls and Call Stack
	Slide 30: Method Calls and Call Stack
	Slide 31: Method Calls and Call Stack
	Slide 32: Method Calls and Call Stack
	Slide 33
	Slide 34: Memory
	Slide 35: Memory
	Slide 36
	Slide 37: this Reference
	Slide 38: this Reference
	Slide 39
	Slide 40: Memory
	Slide 41
	Slide 42: Memory
	Slide 43
	Slide 44: Memory
	Slide 45: Finding Correct Variable
	Slide 46: Shadowing
	Slide 47: Shadowing
	Slide 48: End of Slides

